Archivo de la etiqueta: ventilación

100% Colt International

Carta del CEO (Colt España S.A.)

Representa para mí un honor anunciar que el 15 de marzo de 2017 la sociedad Colt España S.A. pasó a ser participada al 100% por Colt International. De esta forma, la firma española se integra al completo dentro de Colt Group, renovando y afianzando su posición de liderazgo en el mercado nacional.

Sigue leyendo

TwitterLinkedInGoogle+FacebookCompartir

Ventilación Natural: La solución para industrias con gran generación de calor

labyrinth nemak-f4ab181dEn la gran mayoría de ocasiones, la ventilación natural es la solución más eficaz y económica para aquellas naves o edificios industriales que albergan procesos que generan una elevada carga térmica en su interior, pues esto conlleva tener un elevado gradiente de temperatura.

A mayor altura de la nave, mayor eficiencia del sistema de ventilación natural y condiciones más idóneas, pues el efecto chimenea que se crea permite un movimiento de aire de manera más fácil entre los puntos de aportación y extracción de aire.

El sistema de ventilación debe garantizar que nunca se sobrepasarán las temperaturas máximas que admite el proceso de producción según las condiciones definidas por el usuario, con el fin de no perjudicar la eficiencia del mismo, así como que se obtienen condiciones de trabajo confortables y agradables para el trabajador.

Ventilación natural vs. Ventilación mecánica

Independientemente de si se trata de un nuevo edificio industrial con previsión de altas ganancias internas de calor o bien de una remodelación de una nave ya existente, el diseñador debe evaluar los pros y contras de la implantación tanto de un sistema de ventilación natural como de uno de ventilación mecánica, respectivamente.

Asimismo, también se deberá buscar una solución que sea rentable económicamente, y en este sentido los costes de funcionamiento de un sistema de ventilación natural son prácticamente insignificantes:

  • Ausencia de consumo de energía.
  • Mantenimiento mínimo.
  • Sistema autorregulable: a mayor temperatura de aire, mayor es el caudal de aire que se mueve así como mayor es la eficiencia del sistema.
  • Posibilidad de enfriamiento nocturno.
  • Mayor vida útil de la instalación.

Sin embargo, existen algunos condicionantes que impiden o dificultan la implantación del sistema de ventilación natural:

  • Naves con altura insuficiente para lograr un buen efecto chimenea.
  • Inexistencia de cargas térmicas que generen un gradiente de temperatura.
  • Insuficiente espacio en cota baja para ubicación de tomas de aire exterior requeridas: los diferenciales de presión no deben ser muy elevados, pues en caso contrario la ventilación natural no funciona de una manera eficaz.
  • Zonas parcial o completamente ubicadas en el interior de un edificio, de modo que no hay acceso directo al exterior y por lo tanto es imposible dotar al sistema de aberturas para ventilación natural.

CFD: elección de la solución adecuada

Un análisis de simulación computacional (CFD) es una excelente herramienta para identificar la mejor solución en términos de ventilación para un proyecto en particular.

El análisis CFD, el cual debe ser llevado a cabo por un experto en uso de herramientas CFD, permite predecir, mediante un modelo de campo previamente definido, los flujos internos de temperaturas y velocidades, monitorizando con el máximo detalle el comportamiento del sistema de ventilación en todos los puntos críticos, ayudando de esta manera a desarrollar la solución de ventilación más eficaz en cada caso.

CFD ventilacion figura 1

Figura 1: distribución de presiones en plano vertical

La Figura 1 muestra la distribución de presiones que se obtiene en un edificio industrial con zonas a diferentes alturas, todas ellas comunicadas entre sí. La simulación CFD permite mostrar que el plano neutro de presiones (neutral line) se encuentra en la parte superior del edificio. En consecuencia, el sistema de extracción de aire sólo será efectivo si éste se instala por encima del citado plano, mientras que la aportación de aire se deberá extender a bajo nivel en todas las zonas.

CFD ventilacion figura 2

Figura 2: flujo de aire previsto en interior del edificio

Asimismo, el análisis CFD de los flujos de circulación de aire y de las velocidades que se alcanzan dentro de la nave permite identificar la mejor ubicación (ver Figura 2) tanto de tomas de aire exterior, como de aireadores para evacuación de aire caliente en cotas altas del edificio.

Fachadas bioclimáticas: Campus de l’Université de Bordeaux (Burdeos, Francia)

EL PROYECTO

Se trata de una rehabilitación consistente en dotar a 6 edificios existentes del campus de l’Université de Bordeaux de una nueva fachada bioclimática. La fachada tradicional existente queda envuelta por una fachada de vidrio simple obteniéndose como resultado una doble piel vidriada que funcionará como un captador en invierno y como un ventilador en verano. Esta nueva piel además dota al edificio una nueva y renovada imagen.

CONCEPTO

Las fachadas bioclimáticas permiten regular térmicamente el edificio protegiéndolo de las inclemencias meteorológicas e implementando medidas pasivas que mejoran las condiciones de confort interior y comportan un ahorro energético.

La fachada bioclimática cambia a lo largo del año adaptándose al clima: en invierno, la fachada vidriada permanece cerrada absorbiendo la radiación solar que permite calentar de manera pasiva el interior del edificio. En verano, la fachada se abre en la parte superior e inferior y se crea una circulación de aire alrededor del edificio que ventila de manera natural los espacios interiores.

Otras ventajas importantes del sistema:

  • Disminuye las pérdidas de energía en invierno
  • Evita el sobrecalentamiento limitando la radiación solar directa en verano
  • Comporta un ahorro energético significativo (reducción del uso de sistemas de climatización mecánica)
  • Aporta iluminación natural
  • En renovaciones, permite dotar al edificio de una nueva imagen
OTCE MP - STRUCTURE

Imagen del edificio del Campus de L’Université de Bordeaux después de la intervención

FUNCIONAMIENTO

VENTILACIÓN:

Una fachada que se adapta al clima

Podemos diferenciar principalmente dos tipos de funcionamiento de la fachada bioclimática respecto a la ventilación: el funcionamiento en invierno y en verano.

Funcionamiento en invierno (Figura A)
En invierno, los aireadores situados en parte superior e inferior de la fachada permanecen cerrados. La piel exterior vidriada absorbe la radiación solar acumulando aire caliente que envuelve el edificio. Esto reduce las pérdidas de calor y limita el uso de la calefacción.

Funcionamiento en verano (Figura B)
En verano, la apertura de los aireadores en parte superior e inferior de la fachada bioclimática permite crear una corriente de aire fresco alrededor del edificio que ventila de forma natural y pasiva. Se evita conservar las aportaciones solares en la fachada lo que permite reducir el uso del aire acondicionado.

“La fachada bioclimática funcionará como un captador en invierno y un ventilador en verano”

Proyecto Colt Fachadas Bioclimaticas Universidad Burdeos

   Figura A                                                                     Figura B

En entretiempo, la posición de los aireadores se regula automáticamente en función de las temperaturas interiores y exteriores para optimizar el confort de los ocupantes y limitar el uso de sistemas de climatización mecánica. Para ello se contará con una central de climatización (GTC) que gestionará la apertura y cierre de los aireadores en una proporción de 30-70%.

SEGURIDAD EN CASO DE INCENDIO

Sistema de Control de Temperatura y Evacuación de Humos (SCTEH)
La fachada bioclimática tendrá otra función esencial: la evacuación del humo en caso de incendio.
Los aireadores estarán conectados a la central de incendios (CMSI) que al recibir la señal del sistema de detección, accionará la apertura del 100% de los aireadores (los que se encuentran en parte superior servirán para la evacuación de humos y los de parte inferior para la entrada de aire).

Los aireadores para el proyecto de renovación del Campus de l’Université de Bordeaux, situados en la parte superior e inferior de las fachadas bioclimáticas, han sido suministrados por Colt. Se trata de aireadores arquitectónicos de lamas Coltlite que ofrecen altas prestaciones y satisfacen al mismo tiempo las exigencias estéticas del proyecto. Las fachadas han sido encargadas a la empresa Acieroid y el despacho de diseño e ingeniería medioambiental Franck Boutté Consultants, ha llevado a cabo la implementación del concepto bioclimático.

4 1 3 Coltlite CLS.dwg

Detalle e imagen del aireador arquitectónico de lamas Coltlite de Colt situado en parte superior e inferior de las fachadas bioclimáticas

 

 

 

 

 

 

 

 

 

ask google

El control de humos de incendio en Centros Comerciales: 2. Objetivos y componentes del sistema

Objetivos del sistema de control de humos en un centro comercial

Un buen diseño del sistema de ventilación y extracción de humos en caso de incendio deberá ser capaz de mantener libre de humos las vías de evacuación en las diversas plantas ocupadas, a fin de permitir la evacuación de las personas con el mínimo riesgo de inhalación de gases y otros daños físicos. Este es el objetivo básico expresado en el Código Técnico de la Edificación en lo relativo a seguridad en caso de incendio.
Por otro lado, un correcto dimensionado del sistema de control de humos en un centro comercial evitará daños estructurales en el edificio, dado que implícitamente también se controla la temperatura de las bolsas de gases calientes que tienden a acumularse bajo la cubierta (depósitos de humo). Las temperaturas de los gases calientes de combustión deberían estar siempre por debajo de los 550ºC, a fin de evitar el probable colapso del edificio (combustión súbita generalizada). Asimismo, la temperatura de diseño de los gases en estos depósitos de humos no deberá exceder los 200ºC cuando las vías de evacuación de personas pasen por debajo de los mismos.
Otro factor de importancia es que la liberación de humos de incendio permite un acceso más seguro para las brigadas de extinción de incendio, quienes encontrarán un ambiente de mayor visibilidad y respirable para acometer su trabajo.

Kameleon ventilators at Festival Place, Basingstoke

Componentes de un sistema de control de humos en centros comerciales

  • Aireadores naturales o exutorios, para la evacuación de humos y gases calientes, así como para aporte de aire fresco de reposición en el sistema.
  • Barreras o cortinas de humo, tanto fijas como móviles, para la compartimentación de los gases de combustión y/o la canalización de los mismos.
  • Sistema de control o accionamiento del sistema, formado por cuadro de control conectado con la centralita de incendios, líneas eléctricas y/o neumáticas, fuentes de alimentación o transformación, sistema de aire comprimido…
  • Ventiladores mecánicos, para aporte de aire o extracción de humos en caso de optar por una solución mecánica, muy habitual en locales o tiendas de más de 1.000 m2 de superficie y ubicados en plantas bajas con forjado como cubierta, sin poder practicar aperturas para instalar aireadores naturales.

Estos habrán de satisfacer las normas españolas de producto aprobadas y pertenecientes a la familia de normas europeas EN 12101, destacando las tres siguientes:

  • UNE-EN 12101-1:2007 + /A1:2007: Especificaciones para barreras para control de humo.
  • UNE-EN 12101-2:2004: Especificaciones para aireadores naturales de extracción de humos y calor.
  • UNE-EN 12101-3:2002 + /AC:2006: Especificaciones para aireadores extractores de humos y calor mecánicos.

También están publicadas las normas UNE-EN 12101-7:2011 Secciones de conductos de humos, UNE-EN 12101-8:2011 Compuertas de control de humos y UNE-EN 12101-10:2007 Suministro de energía. No obstante, en estos momentos todavía no existe una norma española que especifique los requisitos que deben cumplir los paneles de control (futura UNE-EN 12101-9).